
AD-fl155 224 DA COMPILER VAIDATION CAPABILITY: LONG RANGE PLflN(I) i/

I ~SOFTECH INC WALTHflM MR J 8 GOODENOUGH ET AL- FEB 80
UNCLASSIFIED 16-. D937 C08 F/6 912 N

lillllllllll
l'.

___ 111111.42..

MICROCOPY RESOLUTION TEST CHART
N~ATIONAL BUREAU OE STAND)AR[> I-,, A

77,1
%4 .

0~~ T~ (t

1 .

..4' .% .4

*>1z

*sOFreCH
THIE SOPTUJNAE TECPflOLOGY COflfly /

ADA COMPILER VALIDATION CAPABILITY:

LONG RANGE PLAN

1067-1.1 -Accession For
FiTIS GRA&I

February 1980 DTIC TAB
APPP~vnU:),ruounced

ByD I fict i on___

AviBylt Co------ e---

Distreiaion/

DefenseAaiab11t Advnce ReerhPojcsAec

DataiIte Ato0

Prepared by

SofTech, Inc.
460 Totten Pond Road 11~
Waltham, MA 02154 ~ ~ '

460 Trten Pondh Road Waltha~m Mayachusetts 02154 617-890-6900 TWX 710-324 6401

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh.en DataFintered) .

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM"

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

) __ __",__ __-_. -

4 TITLE (and Subtitle) 5 TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Capability; Long Technical Report :
Range Plan

6 PERFORMING O'4G REPORT NUMBF"
1067-1.1 "_-_"

AtATHOR s 8 CONTRACT OR GRANT NUMBERlj

John B. Goodenough
John R. Kelly MDA903-79-C-0687 ,

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

AREA 6 WORK UNIT NUMBERS

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02154

I . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency February 1980
IPTO- 1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22207 26

14 MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Office) 15. SECURITY CLASS. (of this report,

L Unclassified
I5a DECL ASSIFICATION DOWNGRADING 0

SCHEDULE

1E I)STRIBJTION STATEMENT (of thic Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the. ahstract entered in Block 20, it different from Report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Compiler validation, programming languages, Ada, compiler testing, software

testing, compiler certification

I A83TRACT (Coitoi,,, on re erSe side If nee.. ary and identlfy by block number)

The Ada Complier Validation Capability (ACVC) will consist of tests, test
documentation, and tools for determining to what extent Ada compilers conform
to the language standard. This Report describes the functions to be supported ... (']
by the ACVC, the general nature of the capabilities to be provided, and the
planned approach for each of the development phases. S

DD I JA 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (N7..n Data Entered)

TABLE OF CONTENTS

1. INTRODUCTION . I

2. SYSTEM SUMMARY.............................2
2.1. ACVC Objectives and Limitations 2
2.1.1. Validation Test Effectiveness 3
2.1.2o Validation Support Tools. 5
2.2. ACVC Structure............................5

221. The Implementers' Guide 5
2.2. Validation Test Structure 7
2.2.3. Validation Support Tools....... 11
2.2.4. Validation Procedures. 12

if2.3. Validation Activities to be Supported. 12
2.3.1. Validating a Compiler. 13
2.311.1 Collecting Information.......................13
2.3.1.2. Preparing Tests for Submission.... 14

2.3.1.3. Executing Validation Tests.... 16
2.3.1.4. Summarizing Results. 16
2.3.1.5. Archiving Findings 17

L2.3.2. Revising the Validation Capabilities 17

3. PLANS FOR EACH PHASE 18
3.1. Phase 1.......................... 1

3.2. Phase 2. 20
3.3. Phase 3. 20

4. RISK AREAS 22

5. REFERENCES.................... 23

A. Documentation Formats.............................24

1067-1. 1 S f'reciq.

-.--

SECTION 1

INTRODUCTION -

The objective of the Ada Compiler Validation Capability (ACVC) is to

determine to what extent an Ada compiler conforms to the Ada Standard. The

purpose of this Report is to describe planned validation capabilities, their

relation to other standardardization activities, and our planned development

approach.

The ACVC is being developed under a three phase contract, Iwith phases 2

and 3 being performed at the option of the Government. "The periods of

performance and principal objectives of each Phase are:

Phase 1 (25 September 1979 through 1 October 1980) -- to produce a

baseline set of validation tests, tools needed to support

validation activities, and procedures for using the tests and tools
2

. Phase 2 (2 October 1981 through I October 1981) -- to increase test

set coverage while malitaining the baseline capability !

Phase 3 (2 October 1981 through 1 April 1982) -- to develop new

validation approaches that attack difficult validation problems not

fully solved in the earlier Phases. In addition, validation

capabilities provided in earlier Phases will be updated and

maintained. - ,7.

Tn the next Section of this report, we describe the functions to be

supported by the ACVC and the general nature of the capabilities to be

provided. Tn Section 3, we describe specific plans for each of the Phases. I
Tn .Sction 4, w, specify risk areas. In Appendix A, we specify documentation

st.ind ird-s to be applied to the ACVC. •

66

SOFTeOCa

10.--!.!

-C-= -Q- , %.

SECTION 2

SYSTEM SUMMARY .0

In this Section, we describe the general nature of the capabilities

needed for Ada compiler validation.

2.1. ACVC Objectives and Limitations

The primary purpose of the ACVC is to provide information the Government
4

needs to decide whether Ada compilers (as well as other kinds of language

processors) conform to the Ada language standard (as defined by the

forthcoming Ada Report). A secondary, but nontheless important purpose is to

assist Ada compiler developers in complying with the Ada standard and in

improving the quality of their compilers. To achieve this purpose, the ACVC

will contain written information of value to all compiler developers and will

provide reports t3 aid developers in identifying and understanding errors

discovered by the ACVC.

It should be noted, however, that the ACVC validation tests will not form

a '_omplete acceptance test for an Ada translator. Overall acceptability

encompasses more than compliance with a language standard. Among the issues

not addressed by the tests that are to comprise the ACVC are some that are of

interest primarily to compiler procurers and some of interest primarily to

compiler users. Among the issues of interest to those buying a compiler are:

• the compiler's maintainability, as reflected by its
* internal design structure
• the implementation standards foilowed by its source code
• the quality of its design and implementation documentation

* Its interface with other support tools, e.g., as reflected by
its object file format
its symbol table format and options for producing a binary
*y~nbr< tab fc for use by n symbolic debugger

2 . .ec H
. . 7 -1.! ..

" . '):.; .: . .;*,. _ ..

*7 -_7 .. % ' ' ' '**1* ~ *

the internal format of the program library

Among the issues of interest to potential users of compilers are:

the range of compiler options

* its compile-time efficiency

the helpfulness of its error message format and content

. the efficiency of the object code it generates

Since information about these user-oriented issues is useful for improving the

quality of Ada compilers, it should eventually be gathered by the ACVC.
Ma AL

2.1.1. Validation Test Effectiveness

The quality of a compiler validation capability is ultimately measured by

the number and importance of the ways a validated compiler is later discovered

to be nonconforming. If the baseline ACVC is of poor quality, Ada compilers

containing significant errors may be approved for official use. Once such S

compilers are in use, it is often costly to make them standard-conforming.

The net result is the development of implementation-defined Ada dialects, and

the goal of a DoD Common Language will not have been achieved.

Consequently, our approach will apply several important design principles

underlying the construction of high quality tests. Perhaps the most important

is that tests must be designed so their successful execution implies (or at

least makes it highly likely) that certain implementation errors are absent.

The basis of this principle, which has been argued at length in [1] and [2],

Is that unless tests have been designed so their successful execution rules 0

out certain errors, little is learned from such success. And of course, a

validated compiler is one that has passed all its tests! This means that to

SOIF~
!067-I .1 3I5 ","i

_O

construct an effective compiler validation capability, one must first

hypothesize the kinds of errors implementers may make and then construct tests

that can only succeed if the errors are absent.

But tests developed in advance of a compiler implementation, i.e., tests

developed without knowledge of a compiler's internal structure (so-called

"black box" tests) cannot, in principle, detect all errors a compiler may

contain, even though, strictly speaking, any errors constitute non-conforming -

behavior.* Since not all errors can be detected, our objective in designing

black box tests will be to ensure that the cost of developing and executing

tests intended to detect certain errors is not greater than the benefit of

detecting the error. For example, undetected errors are non-critical if they

are unique to a particular application program or programmer and an ".

alternative use of the language provides a satisfactory "write-around" until

the error is fixed. Such errors usually reflect the use of rare combinations

of language features. Moreover, although many implementation errors arise

from failure to deal correctly with certain combinations of language features,

we will not attempt to detect errors judged unlikely to occur in practice or

whose effect is unlikely to be critical. To achieve ths objective, the tests

we develop will be based on an analysis of implementation problems and

important interactions among language features that must be successfully dealt

with by every conforming implementation. Tests will then be devised to check

* The possibility of developing tests based on knowledge of a compiler's

internal structure will not be addressed at least until Phase 2 of our planned
effort, and possibly not until Phase 3. since such tsts ;irt, ciurrently very .J
difficult and costly to construct.

7

whether these difficulties have been dealt with properly.

2.1.2. Validation Support Tools

Since the validation tests are to be used for compilers executing in a

variety of host environments and generating code for a variety of target

environments, the tests must be easily adapted to cope with these differences.

This means minimizing the amount of manual effort required to adapt tests to

host and target environments and to analyze the results of test compilations.

We will provide semi-automated tools to help reduce the manual effort involved

in conducting these tests, and will design the tests to make use of such tools

easier than might otherwise be the case.

2.2. ACVC Structure

The ACVC has three main components:

An Implementers' Guide describing explicitly the implications of

the Ada Report. It will specifically address implementation issues
that might be overlooked by an unwary implementer. The purpose of
this Guide is partly to point out the implications of statements
made in the Ada Report and partly to specify conditions to be

checked by validation tests.

Test programs to be submitted to a compiler.

Validation support tools that assist in preparing tests for
execution and in analyzing the results of executions.

These components are described in more detail below.

2.2.1. The Tmplementers' Guide

The primary document to be produced in Phase I is the Tmplementers"

Guide. This document describes the ramifications of the Ada Report and in

particular, describes implementation issues that must be properly addressed In

1 OF) - 1 1SOFTecm

a production compiler design. The document also specifies objectives,

constraints, and guidelines for developing specific validation tests. The

document will be keyed to the subsections of the Ada Report. For each

subsection, there will be an analysis treating the following topics:

1. Ramifications of the Semantics -- This section will document S
implications of the language semantics. In cases where the
implied semantics are derived from statements in separate sections
of the Ada Report, a rationale for the interpretation will be
given to aid those who are not intimately familiar with the Report
or the rationale underlying the Ada design. We will give
particular attention to interactions between Ada constructs. For
example, for LRM Section 5.1.1 (Array and Slice Assignments), we
would point out that if A and B are strings with index ranges

1..10, then

A(l..4) A(2..5) & "";
A(1. .0) := ""; -

A(1..O)A(l..0) :=A(2..I);

are all legal assignments. The first assignment does not raise
the OVERLAPERROR exception since the result of concatenation is
not a slice value, and hence there are no index ranges that
overlap. The second assignment is legal because the number of S
elements (i.e., zero) is the same and there is no requirement that
the bounds of an empty slice satisfy the range constraints for
indexing elements of the array. The third example shows a case
where OVERLAPERROR should not be raised even though the slices

have a value in common.
S

2. Compile-time Constraints -- This section will explicitly state
context-sensitive syntactic and semantics constraints to be
checked (at compile-time or load-time), i.e., it will detail the
impl!ications of the legality constraints stated broadly in the Ada
Report. Listing these constraints explicitly provides a
convenient checklist for implementers to ensure they cover all the •
context-sensitive validity constraints implied by the
specification and also, of course, suggests validation tests to be
provided. When useful, we will note non-straightforward ways the
enstraints can be violated.

Fx_,_pticn Conditions -- This section will explicitly state what •
,.uep tion conditions may be raised, since these determine what

run-time checks implementers must provide. For example, in the
case of Section 3.3, we would note that RANGE ERROR Is the only
,,x,'option condition explicitly associated with evaluation of
,-str;i nts, and we will explain the circumstances under which

ne-.cp ion Is raised for ,acb form of constraint. .

A. SO3FeCH
S

4. Test Objectives and Design Cuidelines -- This section will state
test objectives, give design guidelines for test case
construction, list implementation errors to be checked for, and
list problems to be kept in mind while designing or writing test
cases (e.g., to ensure that the tests are as portable as possible
and that they are effective in determining the actual behavior of
a compiler). Borderline cases to be considered by an
implementation will be noted here with program examples when such
examples are the most straightforward way of illustrating the
point being made. These examples are candidates for inclusion in
the validation test se-t.

5. GaDs in the Analysis -- This section will document those aspects
r- the Ada specification for which test objectives have not yet
been defined, e-ther because of potential changes in the language

design or because it is not clear how to construct tests that will
nve the desired properties. In essence, this list describes

those aspects of the ACVC for which further work is needed, either
7ater in Phase 1, or, if the problem is a research problem, it
explains the issues for which further study is required. In
addition, this section will list questions for which the
specification does not provide obvious answers. Our initial
analysis will concentrate on identifying such questions.

2.2.2. Validation Test Structure

One issue in developing a set of validation tests is whether the tests

,should be few in number, which implies a given test can fall for many reasons,

Cr whether individual tests should focus on a small set of implementation 40

frrors, threby leading to a larger number of tests to be processed by a

(on.pl tr.

Tho adinanv , ' aing a large number of fairly specialized tests Is

that more 'nfor7.t~on i5, obtainod abeu compiler flaws. Although validations

r, v or~n'ip , PAT' J)TT7 " T11 r. t r the compiler conforms to the language

ct;!Tc rd ,,r (! leso 't), -.n pr;,c' i , C, c) a response to a validation is as

tinacclptable as a compiler that terminates compilation with the single messa;g,

"pFtoeA, " FPRCMt.'' TlSt ii q c m p ,-s ar* d esf n(,d to detect rior'e tl I i on0 ,

SCFregm

error in a program, so it is useful for xalidation tests to reveal as many

nonconforming aspects of a compiler as possible. There are several reasons

for this. First, the (ompiler being validated may be needed for immediate use

by some project; if the compiler's nonconformities are minor with respect to

its anticipated use, DoD may decide it is cost-effective to permit use of the

non-conforming compiler while the errors are being corrected. The question of

whether such use should be permitted is a policy decision based on the nature

of the nonconforming behavior ind the expected use of the compiler. Such a

nclicv decision should not be pre-empted by minimizing the information

produced by the test set.

Second, if validation stops after detection of the first error or only a

few errors, leaving much of the compiler untested, then these tests must be

repeated for the corrected compiler version. If only a few errors are

d~scovered each time, the cost of retesting becomes significant. Since the

Government is likely to be paying for the validation cost (in one way or

another), 4it is important to obtain as much information about nonconforming

beh;'vior as possible to reduce retesting costs.

Third, if the test modules are large, fatal compiler errors yield no

information about what features have ben successfully tested. To obtain more
O

Znformption from a fatal error, a large test program must be decomposed Into

e' '-contained modues. This can bf, costly and time-consuming if the tests

w- ri, nt origna liv y,,i nd to be d1, ,opo.,ed into small units.

Thus, we propose to develop many small validation test modult-,

(ippr r ox 1 cra- y ,rovrams conta n , g irc ,verage of 0 4 nes of text). Th,

SOFFecjq
S ,.1- l

SECTTON 4

RISK AREAS

The primary area of risk is that if the Preliminary Ada Reference Manual

is f'ound to be very difficult to interpret, a large number of questions will

have to be asked of the language designers and answers received before -

ana'vsis of implementation difficulties and test objectives can be undertaken

arod :tivelv'. Our initial analysis of some of the seemingly simpler areas of

thc " c~ag indicates that this may pose a problem. Our plan is to identify S

r,,st tens as quicklv as possible, so work can proceed on those areas of

the language where the intent is clear.

secondary area of risk concerns the magnitude of the language

rev's:ons. The greater the change between the preliminary and final version

of Ada, the less thorough will be the coverage we can provide in Phase I. The --

worst situation would be for us to spend time analyzing areas of the language

that are, later so changed that most of the analysis is no longer applicable.

,ivenr sufficient visibility into the language revision process, this risk can •

b, r~duce d, but the possibility of surprises is always present, at least until

ng u- n g kes r frozen.

7

. . --.. . - . S

capability for validating Ada's tasking semantics and for ensuring that

optimizations are performed correctly.

In addition, it is likely that the Ada standard will be updated during

the Phase I period to r' flect the experience gained in producing the first Ada

prodictlon compilers and in using Ada for some embedded computer applications.

T,,w validation tests will be updated to reflect these changes as well as any

deffiencies discovered in the course of validating various Ada compilers.

rI

4
o

* 21 OFT2C

.. .i

In Phase 1, we will also produce a basic set of tools for adapting tests

to the requirements of a particular compiler, and we will provide a

description of procedures to be followed in using these tools to validate a

compiler.

3.2. Phase 2

The areas intentionally given reduced coverage in Phase 1 will be

addressed more thoroughly in Phase 2. In addition, the baseline coverage will

be updated and improved based on further analysis of the official Ada Report.

Since the official Ada Report will at best appear toward the end of Phase 1,

it is likely that further analysis in Phase 2 will show deficiencies in the

Phase I test coverage that were not recognized at that time. These

deficiencies will be corrected in Phase 2, and all associated documentation

updated.

A key Phase 2 activity will be to use the baseline tests in validating an

experimental or production compiler. Past experience with validation tests

indicates that even when considerable care has been taken in test design, more 40

problems will be discovered when the validation capability is used the first

time than when it is used on subsequent occasions. Correcting these problems

will be an important Phase 2 activity.3a1

3.3. Phase 3

Pbase 3 will address research issues to further refine the validation

capabilities. Although it is difficult at this time to accurately predict

what t1,ose issues will be, it is likely that work will continue to improve the

I Of 7- 20SOFI'eCHI0 7-! .! 20 O 'e u.
S

1980. An intermediate draft for the second iteration will be available in May -

1980. A first draft for the third iteration (covering all of revised Ada)

will be available in August 1980. The final version will be delivered at the

end of Phase 1, on 1 October 1980. It is our intent to permit limited

distribution of these intermediate drafts to people designated by DARPA and to -.

hold reviews at which recipients of the drafts will be invited to comment. In .4

this way, we will identify errors and omissions in our analysis and the

validation effort will benefit from the experiences of those engaged in

experimental or production implementations of Ada compilers.

Not all areas of Ada can be covered with equal thoroughness in the

baseline tests. In particular, more tests are needed to the extent an - -

implementer has many ways of implementing a required capability. The greater

the variety of implementation approaches and requirements, the greater the

number of tests needed to check that each approach has been carried out .

successfully. There are several areas where Ada leaves considerable

implementation flexibility. These areas will not be covered thoroughly in .1
Phase 1. They are:

tasking semantics for a wide range of target computer
architectures;

the INPUT-OUTPUT package for the full range of 1/0 peripherals Ada-compilers might support; 4

the correctness of optimizations

other standard packages that may eventually be defined, e.g., the "-i

mathematical functions package.

Only bnsic capabilities in these areas will be covered in Phase 1.

!r16-1 .1 19 -9OFJ~1 .

• -

SECTION 3

PLANS FOR EACH PHASE

In this Section, we describe our current plans fcr capabilities to be

provided in each Phase of the effort.

3.1. Phase I

The purpose of Phase 1 is to produce a baseline validation capability

that addresses all aspects of Ada to some extent and whose weaknesses in

coverage are documented. A prime :ocus in Phase I will be the Implementers'

Guide. A high quality validation test set (i.e, one that detects even subtle

nonconformities) must address interactions among language features (since 6

these are a primary source of implementation problems and subtleties) and must -

cover potential specification misinterpretations and subtle ramifications.

Pointing out implementation problems explicitly will be of considerable •

assistance in discouraging Ada dialects. Often dialects arise because of

inadvertent misunderstanding of a specification. If the Implementers, Guide

points out possible mistakes, implementers are less likely to make them.

Hence, producing a thorough Implementers' Guide is necessary not only to guide --

the construction of high quality tests but also to help prevent inadvertent .

deviations from the specification.

The approach we are taking in Phase 1 is to make three iterations in

producing the Implementers' Guide. The iterations are needed because Ada is -

currently undergoing revision. To cope with the possibility of changes, the

first iteration will address only the most stable parts of Ada. A draft

Tmplementers' Guide for the stable subset of Ada will be available in March

.90'eCH"
O " -, ,., 12 "

5OFJ~g m

o i o ~ o i ". " • .' . - . . . •,- ... , , , ,• .. - o ..

2.3.1.5. Archiving Findings

As a last step, all plans, tests, preparation aids, post processing

analyzers, and findings are archived for later use when a revised version of

the compiler may need to be revalidated. The ACVC will recommend archiving

procedures and concepts.

2.3.2. Revising the Validation Capabilities

in essence, the validation capabilities consist of:

the validation tests

the Implementers' Guide

validation support tools

descriptions of procedures for using the tools

There are a variety of reasons for modifying any of these capabilities:

• problems encountered in conducting a validation may lead to .

modifications in the validation support tools and/or the test cases

(to remove test case errors).

errors discovered in validated compilers may indicate previously
undocumented implementation problems; both the Implementers' Guide

and the validation tests must be updated. i

ambiguities are discovered in the language specification.
Additional Class E tests are needed to determine how a given

implementation has resolved these ambiguities.

the validation tests are expanded to cover known weaknesses. .

the language specification is modified.

After the Baseline Validation Capability is delivered, it will be placed under

configuration control. Procedures will be specified for producing new

releases of the tests, tools, and associated documentation (see Appendix A).

I S

17 •O. ,.,..I

9

2.3.1.3. Executing Validation Tests

The files prepared in the previous step are transported to the compiler

host and compiled. All object code except for Class C, E, and F (and

possibly, A) tests is discarded. Listings from all compilations are saved in
O

machine readable form and processed on the validator host computer to check

that all intended tests were compiled and that expected results were achieved.

The object code is executed on the target computer and results are saved

in machine readable form for automatic analysis on the validator host. Since

people are notoriously unreliable in scanning results for correctness,

extensive effort will be directed during test case design to ensure results

can be automatically checked insofar as possible.

Any difficulties encountered during compilation or execution due to

errors in the tests themselves will be noted and used as inputs to the Test

Revision process.

2."..4. Summarizing Results

1'sing editing tools and report templates provided by the ACVC, results of *1
a validation will be summarized, following the report structure referenced in

O

Appendix A. The purpose of the Validation Summary Report is to concisely

describe what compiler was validated and what nonconforming behaviors were

discovered. Since groups of tests may fail for a common cause, preparation of

,' validation summary report !is not a completely automatable task. Results

must be studied to extract as much useful information as possible.

o 7-!. 16 SO.Fre g.

In general, the following steps must be performed before the Ada

Validator test files are transported to the compiler host: S

generate specific versions of tests for the full range of
capabilities supported by the compiler (e.g., to test all levels of
numeric precision supported, including interactions among these
levels);

• substitute implementation-dependent parameters in appropriate
tests, e.g., literal values testing the upper and lower limits of
the numeric ranges supported, string literals that contain all
characters of the supported character set, etc. In general, the
validation tests will contain the equivalent of text macro
invocations so implementation-dependent constructs can be
substituted at the appropriate places.

embed the tests in the appropriate job control language for

compiling, linking, and executing the tests.

• generate file names that satisfy the compiler host's naming
conventions.

tailor Class D tests to the correct size.

prepare text processing macros suitable for analyzing
machine-processable results of compilation and execution.

A file of implementation-dependent parameters must be prepared for every

validation. This file gives values for numeric precisions, values of

attributes of built-in types, and other parameters to be used in generating

tests that are appropriate for a specific compiler. An important aspect of

the ACVC test set design is identifying places where these parameters should

be used in specific tests. Unless these parameters are used appropriately, it

will be difficult to adapt the tests to the capabilities of a specific

compiler.

Difficulties in using the test preparation editing tools will be noted

and input to the Tool Revision process.

1067-1.1 15 i01117

compiler, the method of transferring object code for execution on

the target computer, the methods for linking and loading modules to
be executed, the method for collecting and displaying compilation

results, etc.

the object host environment, including its file structuring
capabilities, file naming conventions, the method for linking and
loading (if this is to be done on the target computer), the method
of initiating object code execution, the method for collecting

execution results in machine-processable form, etc.

In addition, if the validation is being performed on a new version of a

previously validated compiler, information from the previous validation must -

be analyzed to determine how revalidation costs might be minimized (e.g., by

combining test programs into larger modules, by reusing test preparation

macros, etc.).

"

This information is used to prepare a comprehensive Test Plan describing

what tests are to be run, information needed to prepare tests for submission

to the compiler, estimates of time required to perform the tests, procedures

for manually and automatically analyzing test results, etc. (see Appendix A).

The Test Plan controls subsequent phases of testing activities. The ACVC will

include a prototype Test Plan to serve as a guide for creating actual Test

Plans.

2.3.1.2. Preparing Tests for Submission

O

The basic purpose of this activity is to adapt, and in some cases,

generate, text files in a form suitable for submission to the compiler being

validated. A number of ACVC text editing macros (and macro templates) will be

provided to automate as much of the preparation process as possible.

. 14 Flgc

I

WE
tests, tools, and procedures. In this Section, we describe the general nature

of these activities since they affect the structure and content of the ACVC.

2.3.1. Validating a Compiler

There are five principal activities performed in validating a compiler.

These are:

1, Collecting information needed to select and adapt the validation

tests for the compiler being tested.

2. Preparing the tests for submission to the compiler.

3. Performing the tests, i.e., compiling them, executing the
executable tests, and collecting the results for later analysis.

4. Summarizing the test results.

5. Archiving the findings.

2.3.1.1. Collecting Information

The principal output of this activity is a Test Plan describing all the

information needed to prepare and conduct the validation. Information is

needed regarding:

the language accepted by the compiler, e.g., the character set
accepted by the compiler (full ASCII, EBCDIC, 63-character CDC,
etc.), allowed length of input lines, how an "end-of-line" is
defined, the semantics and restrictions on representation
specifications (Section 13 of the Preliminary Ada Reference
Manual), the syntax and semantics of commands for manipulating the
program library (Section 10.4), any language subsetting, the number

of levels of integer, fixed, and floating point precision supported
and their names, ranges associated with numeric types, etc. This j
information is used In selecting and adapting the tests to be used,
e.g., some tests do not apply if only a single integer precision is

supported.

compiler options provided, which ones are to be tested, and how

they are exerclsed.

the compiler host environment, including file structuring
capabilities, file naming conventions, the method of Invoking the

1O67-1 .1 13 OeO

implementation dependent (e.g., the maximum and minimum integer literal

values). Appropriate values must be inserted into some tests.

All these text handling problems will be dealt with by the validator host

tools, which will consist primarily of text editing tools and macros. We plan

U to use TECO and TECO macros to perform commonly needed text manipulations. If

the compiler host is available on the ARPANET, the validation tests, once

adapted to the CH requirements, will be sent to the CH using the Net. If the

CH is not on the Net, the tests will be brought to the host using an

appropriate physical medium. If a comparable ARPANET host is available, it

might be used to transfer the text to such a medium.

Text editing tools will also be used to analyze the machine processable

results of compilations and executions -- to confirm that all required tests

were submitted and that all test failures are identified.

* The text processing tools we provide will be documented in accordance

with the specifications provided in Appendix A.

* 9

2.2.4. Validation Procedures

Usage of the tests and tools will be described in a Validation Procedures

r_ Manual structured in accordance with the specification cited Appendix A. The S

general nature of these procedures is discussed in Section 2.3.

2.2. Validation Activities to be Supported

There are two principal actIvitlos supported by the Ada Compiler

VI ldt i(n (apnbII i ty: 1) (.ompi 1er v:il .nt ton and 2) revising the val Idattion

9

~soF'reoCe

Additional test Classes may be added as a result of Phase 2 and Phase 3

efforts, e.g., tests of object code efficiency, compiler performance, etc.

Within each class, a test will be given a name corresponding to the

Chapter, Section, and Subsection number of the part of the Report to which the

test pertains. Since most subsections require more than one test, tests will

be assigned sequential numbers within subsections. Each source code module

will be in a separate file which will be given the name of the test. There

may also be a number of INCLUDE files used in conjunction with test modules.

2.2.3. Validation Support Tools

There are conceptually three environments relevant to validating a

compiler:

the validation host (VH) environment, in which validation tests are
prepared for execution by an Ada compiler and validation results

are analyzed; S

the compiler host (CH) environment, in which Ada tests are
compiled. In some implementations, target modules may also be
loaded in the CH environment; executable code is then transported
to the object computer for execution;

the object host (OH) environment (the target computer) in which Ada

programs are executed.

An important aspect of our approach to the ACVC is the Validator Host concept.

The Ada validation tests will constitute a fairly large amount of textual 0

material. Powerful text editing and file management tools are needed to

create, access, and maintain this material. More importantly, when preparing

to perform a compiler validation, the tests must be adapted to conform to the S

ronventions of the Compiler Host for submitting text to the compiler and

oht ilnIng outnut. Tn addition, a variety of test paramet ers may be

.1 SOF'leCh

i .i S

Class L Tests. These tests also demonstrate the rejection of - -

illegdl Ada programs, but the errors in these tests may be detected

at link-edit or load time by some implementations. These tests are .0
grouped together because their PASS/FAIL criterion is different
from that for Class B tests, namely the test succeeds if an error
is indicated before execution begins. An example of a class L test
would be compiling a version of a package with revised subprogram
interfaces and then attempting to load the package without first
recompiling and/or modifying the units using the revised package.

Class C Tests. These tests are designed to be executed after
compilation. They verify that legal Ada programs are executed
according to the specified semantics. The programs are
self-checking and generate PASS/FAIL messages before execution is

terminated.

Class D Tests. These tests are used to check capacity requirements
for Ada compilers, e.g., that the number of subscripts, parameters,
parenthesis nesting levels, number of link-edit symbols, etc. is
only limited by host system capacities rather than arbitrarily.
When a compiler does impose small capacity limits, the tests are
designed to indicate approximately what capacities the compiler
supports (e.g., at least seven but not fifteen subscripts).

Class E Tests. These tests examine the permissive aspects of the
Ada Report, e.g., whether a warning is issued if the compiler
detects expressions guaranteed to raise an exception if the code is
executed (see Sectior 10.6 of the Preliminary Ada Reference
Manual), e.g., as in X := A/0.0;. Such expressions can arise as a
result of generic instantiation or inline substitution of
subprograms. Other aslects of an implementation that affect its
interface with the eyternal object computer environment but which
are not currently specified are also checked by these tests, e.g.,
consider

type BIASED is new INTEGER range 0..15;
for BIASED use 4;

In interfacing with external devices, it could be important to know 0
whether 2#1000 represents the value zero (if a signed biased
representation is used) or the value 8 (if an unsigned
representation is used). Other tests in this class will be used to
determine what interpretation an implementation has taken with
respect to unintended ambiguities discovered in the Ada Report.

The results of these tests are used to inform compiler users and to
improve the Report.

Class F Tests. These are tests that demonstrate the correct and
complete operation of standard packages, e.g., the INPUT_OUTTPUT

package, the mathematical library package (when one is specified as
a standard), etc.

1n SOF11cg-I

- -

disadvantage of having so many small tests is that submitting many small

compilations is more costly than submitting fewer and larger compilations, and

the job of keeping track of a large number of tests and their results is more

demanding. However, an advantage of Ada is that separately compiled units can

usually be combined together into a single compilation unit by enclosing them

with a module body. Thus the benefits of submitting large compilation units

can be achieved if tests are originally designed as small independent units,

but t~ke reverse is not necessarily the case. Thus, we plan to produce a large

number of independently compilable validation tests, and provide plans and

procedures for grouping them into larger units when this is appropriate (e.g.,

when retesting an upgraded or corrected compiler). Tn addition, we will

provide validation support tools (see Section 2.2.3) that will ease the burden

of dealing with a large number of tests.

.
The validation tests will be divided into seven classes:

Class A Tests. These tests demonstrate that legal Ada programs are
accepted by the compiler being tested. The criterion for passing -*

these tests does not depend on execution of code and cannot be
achecked by executing object code (see Class C tests below).

Successful compilation implies the generated code will execute
successfully and print a PASS message. Hence, execution is not
required, but can be performed if desired.

Tests in this class may cause warning messages to be issued by
the compiler, but must not generate error messages.

There are rather few tests in this class. Among the Ada

capabilities tested by Class A tests are the INCLUDE, LIST, and
PAGE pragmas. In addition, tests designed to check whether an
implementation has extended the list of reserved words would fall
in this class.

Class B Tests. These tests demonstrate that the compiler rejects
illegal Ada programs. Class B tests are successful If they
generate error messages at compile time. Some tests may generate
multiple error messages, although strictly speaking, once a

* compiler has determined that a submitted program does not conform
to the Adp Report, the Report is silent regarding what further
errors tbf, 'omp ior must det ect.

!067-!1.1 (sO TecH

SECTION 5

REFERENCES

[1ij Goodenough, j. B. and Gerhart, S. L., "Toward a Theory of Test Data
Selection," IEEE-TSE-SE 1, 2 (June 1975), 156-173.

[21 Goodenough, J. B., "A Survey of Program Testing Issues," in Research

Directions in Software Technology, P. Wegner, ed., MIT Press, Cambridge,
Massachusetts 1979, 316-342.

4 I

4

V7-1 .1 -9OFlecH.

APPENDIX A

Documentation Formats

This Appendix describes the formats to be used in documenting the

following validation capabilities in each Phase of the effort:

* the Implementers' Guide

• validation support tools

test programs ft

validation procedures

The content of the Implementers' Guide will follow the structure

indicated in Section 2.2.1 of this document. It will be formally updated in

Phases 2 and 3 of this effort.

*] The validation support tools (i.e., the text editing macros) will be

documented in accordance with DoDI 7935.1-S, dated 13 September 1977, using

the specification for a Program Maintenance Manual.

The set of test programs will also be documented in accordance with DoDI

7935.1-S, using the specification for a Program Maintenance Manual. However,

sections 2.4c-h and 3 do not apply. The functional description of each test

program (Section 2.4b) will reference the appropriate test objectives section

of the Tmpreenters" Guide.

P, Oirs for using the validation support tools and tests to validate a

--npV'r w!'! be described using DT-M-3410, Users Manual (Computer Program).

As p;irt of thes#e procedures, a sample template for a Test Plan will be

pr(,., I ded fol'owi g the general ouI I ine of DT-T-3703A, CPCT Test

24 SOF-eCpm
, €,"_! I 2 -'9

Plans/Procedures.

The format of the Validation Summary Report will be adapted from the -

format currently used for COBOL Validation Summary Reports provided by the

Federal COBOL Compiler Testing Service.

N -

p

2

• ..7- .29 S.1ec

Cy.

" FILMED

7-85

S

• DTIC
0I

" i i. i : - . : .:i:!;i:i. -C.-

